Viewing Flowcharts in Crystal C/C++

Part 1: Simple Flowcharts

Part 2: Simplify a Complex Flowchart

Part 3: Examples

Flowchart Toolbar

Part 1: Simple Flowcharts

- 1. Condensed View & Detailed View
- 2. Simple Flowcharts / Complex Flowcharts
- 3. Bracketing a Loop or an If
- 4. Highlight One or More Paths
- 5. Consecutive Nested if's
- 6. Side-by-side View of the Flowchart & Code
- 7. View Object's Type

Flowcharts are Easy to Read with

Condensed View & Detailed View

- ← A flowchart of a simple 60-line function.
- Press the <Home> key to go to the start.
- Press the cursor keys \downarrow , \rightarrow , \leftarrow , \uparrow to move through the flowchart.

A cursor key brings the next symbol in.

If the next symbol is far away, then for a smaller movement:

- use scroll bar in the detailed view.
- Or move the tracking rectangle.

Tracking Rectangle indicates the contents of detailed view.

Simple Flowcharts / Complex Flowcharts

Condensed views of two different functions

A Simple Flowchart

A Complex Flowchart

 When the condensed view is simple, you can easily walk through the detailed view.

- Sometimes the condensed view is complex because
 - the function is very long, and the resulting condensed view is crowded.
 - the function contains many goto's, and so the logic flow is hard to track.

To Read Simple Flowcharts

When you are going through a simple flowchart (or a simplified form of a complex flowchart),

use the following operations:

- Bracket a loop or bracket an if-else segment of the flowchart.
- Highlight all paths that can reach a given point in the flowchart. Highlight a connection so that it stands out from other neighboring connections.
- View the type information of all objects that appear in a given symbol.
- Get a side-by-side view of the flowchart and corresponding code.

Bracketing a Loop or an If

To bracket a loop or an if statement:

Press the <Alt> key and click on a while, do, for, or if symbol in the detailed view.

For additive bracketing, press the <Ctrl> key instead of <Alt>.

Bracketing is useful for:

- highlighting one or more loops.
- Create visual markers* in a monotonous flowchart.

Bracket every third if-statement to create visual distinction.

^{*}The above flowchart has a monotonous sequence of if-statements.

Highlight One or More Paths

To highlight one or more connections:

- · Click on a connection line When a "break" or "goto "connection crosses over other connections, click on that connection to highlight it. It will help you track the other connections easily.
- Click at the input of a symbol All paths that can reach the input become highlighted.
- Click at the output of a symbol In case of a high-level symbol, it highlights all output branches of that symbol.

For additive highlighting,

press <Ctrl> while clicking as described above.

Consecutive Nested if's

When there are consecutive nested if's,

- first read downward through all the "YES" branches,
- then read the "NO" i.e. else branches; inner else first, then the outer else.

Labeling of if-symbols:

Consider the if-symbol "if(!TEST_BIT(slot, fp \rightarrow overrides))"

!0 is analogous to !TEST_BIT i.e. the result of TEST_BIT is zero.

!^0 indicates TEST BIT is non-zero.

You can change the labeling style.

(in the Flowchart card of the Customize card in the Options menu)

Side-by-side View of the Flowchart & Code

View Object's Type

Also, long statements are easier to read

Because of limited width of symbols, sometimes it is hard to read a lengthy if-expression or a long function-call.

Click in the left half of the symbol.

- The pop-up window displays the code in an easy to read format.
- It also displays the type information of all objects that appear in the symbol.
- In case of a high-level symbol, the pop-up window displays the code covered by that symbol.

A click in the right-half simply selects the symbol.

To export a flowchart as a bitmap file:

Use the "Flowchart" pull-down menu.

Click Flowchart->Export Flowchart Image->Whole

Or drag-and select a part of the flowchart in the detailed view, Click Flowchart->Export Flowchart Image -> Selected

Part 2: Simplify a Complex Flowchart

- 1. De-emphasize the goto's
- 2. Divide and Conquer a Complex Flowchart
 - a. Select Optimal Level of Detail
 - b. View Inner-Code
 - c. Create an If-else Flowchart
 - d. Create a Loop Flowchart
 - e. Expand a High-Level Symbol
- 3. Zoom-In on a Large switch
- 4. Export a Flowchart

A Complex Flowchart

← array_sub_join(), a 150-line function.

The function contains many goto's resulting in a complex flowchart.

To simplify a complex flowchart:

- Divide and Conquer
- De-emphasize the goto's

De-emphasize the goto's

Divide and Conquer a Complex Flowchart

Select Optimal Level of Detail

Again, we start with the initial flowchart.

Whenever the condensed view looks crowded, try Level 1 flowchart:

- Click the L¹ button in the toolbar.
- If Level 1 flowchart looks too simple, try L^2 or L^3 so that the flowchart is not too simple nor complex.

Now you have a top-level flowchart that is manageable (next page).

Level 1 Flowchart

You can read this Level-1 flowchart easily.

To track the connections that are cutting across other connections,

- Click at the input of symbol **D** to highlight its incoming connections.
- Click at the output of symbol A to highlight its outgoing connections.

or

• Click at the output of symbol B to highlight its outgoing connection.

A, B and C are high-level symbols.

A high-level symbol hides the internal details of a loop, switch etc.

A purple outline indicates a high-level symbol.

View Inner-Code

Click in the left-half of symbol B.

← The pop-up window shows the code covered by symbol **B**.

The inner code of **B** is just a few lines.

You can expand **B** (with a double-click) or simply proceed to view the inner code of symbol **A**.

Only A and C contain sizable code.

- Create flowchart of inner code of A.
- then create flowchart of inner code of C.

Create an If-Else Flowchart

The Flowchart of Inner Code of A and B

← In this If-Else flowchart,

The "YES" part is the code covered by **A**.

The "else" part is the code covered by **B**.

The IF-Else flowchart ends in:

- an End symbol: it represents the statement that follows the if-else logic.
- Any goto's whose target is outside the If-Else flowchart.

Create a Loop Flowchart

Flowchart of Inner Code of Symbol C

← In this Loop flowchart,

The body of the loop shows the code covered by C.

The Loop flowchart ends in:

- an End symbol: it represents the statement that follows the loop.
- Any goto's whose target is outside the Loop flowchart.

Expand a High-level Symbol

to view inner detail

To expand a high-level symbol:

- right-click on the symbol, then click Expand Symbol.
- or double-click in the right-half of the symbol.
- ← Here, all high-level symbols except **A** and **C** have been expanded.

When you collapse a symbol: all consecutive symbols at that indent-level are replaced by a high-level symbol.

An exception - you can collapse a switch by itself.

- To collapse a high-level symbol, rightclick on it, then click "Collapse Symbol".
- To collapse an ordinary symbol, doubleclick in right-half of the symbol.

Zoom In on a Large switch

←Level 3 flowchart of js_EmitTree(), a 2000-line function containing a huge switch statement.

The condensed-view is too crowded.

You can zoom-in on the condensed view:

- Click Zoom In button repeatedly.
- or Press the Shift key and drag-andselect the area of interest in the condensed view.

Right-click anywhere in the condensed view, then click Zoom Selection.

Part 3:	Examples
Example-1	A Moderate-sized Flowchart
Example-2	The Function Contains a Switch
Example-3	A Very Long Function

A Moderate-sized Flowchart Example-1

Fig. 1.1

Initial Optimal-level flowchart

- Crystal C creates the initial flowchart as per its optimal-level-of-detail algorithm. (It corresponds to the L* button in the toolbar)
- The above flowchart is not too crowded; you can read the flowchart as it is, or you may choose to simplify it. -

Choose the Level of Detail

Fig. 1.2

- To reduce the amount of detail:
- 1. Click the L^1 button in the toolbar.
- 2. If Level-1 flowchart looks too simple, try L^2 , L^3 or L^4 till the flowchart is not too simple nor complex.
 - L³ resulted in the flowchart shown above.

Example-1 **View the Inner code** of a High-level Symbol

Fig. 1.3

To view the inner detail of symbol A:

Click in the left-half of symbol **A**.

← The pop-up window shows the code covered by symbol A.

The inner code of A is just a few lines.

You can expand **A** (with a double-click) or having seen the code covered by A, you can go to next high-level symbol.

Only **B** contains a sizable amount of code.

- A high-level symbol hides the internal details of a loop, switch etc.
- A purple outline indicates a high-level symbol.

Go through the simplified Flowchart Example-1

Fig. 1.4

- ◆ To bracket the for-loop: press the ALT key and click the for-symbol in the detailed view.
- To expand high-level symbols: double-click on high-level symbols in the detailed view. (except B since it contains a non-trivial amount of code)

Now you can go through the above flowchart and then view the flowchart of **B** separately.

Create an if-else flowchart

Go through the if-else Flowchart (contains **B**) Example-1

Condensed view of the if-else flowchart

Bracket the if as shown above.

It provides a visual marker in an otherwise monotonous flowchart.

Now you can easily read the above if-else flowchart.

• To go back to the parent flowchart, click the button.

(Intentionally Blank)

The Function contains a Switch Example-2

Fig. 2.2

Initial Optimal-level flowchart

• The above flowchart is fairly simple.

It contains a switch statement; each case is represented by a high-level symbol.

• Expand the two high-level symbols: (double-click on high-level symbols in the detailed view.)

Create a switch flowchart Example-2

- To create switch statement's flowchart:
- 1. Click to select the switch-symbol.
- 2. Click to create switch-flowchart.

Switch Statement's Flowchart

Use the cursor keys on your keyboard to move about in the detailed flowchart.

Click on a case-symbol in the detailed view. It will be highlighted and help you as a visual marker.

In this way, you can go through the flowchart.

 To go back to the parent flowchart, click the button.

Back to the Parent Flowchart Example-2

Fig. 2.5

- Now collapse the switch statement:
- 1. Double-click on the switch-symbol in the detailed view.
- To collapse an ordinary symbol, double click on the symbol in the detailed view.
- To collapse a high-level symbol, right-click on it; then click <Collapse Symbol> in pop-up menu.

The Whole Function (with the switch collapsed)

Above is the whole function. (The switch is collapsed.) (You saw the details of the switch earlier.)

About collapsing:

- When you collapse a symbol, other symbols at its level get collapsed too.
- However, when you collapse a switch-symbol, only the switch is collapsed.

Example-3 **A Very Long Function**

Fig. 3.1

Initial Optimal-level flowchart

- 1. Above is the top-level view of a 400 line function.
- 2. Click on the while-symbol to select it.
- 3. Click to create loop-flowchart.

Now you have the flowchart of the while-loop.

while-loop's Flowchart

Initial Optimal-level flowchart of the while-loop

The initial flowchart looks crowded.

4. Click L^1 , L^2 , L^3 or L^4 till the flowchart is not too simple nor complex.

The while-loop's Example-3 **Level-2 Flowchart**

Fig. 3.3

Condensed View

In the detailed view:

- 5. click in the left half of each high-level symbol to see its inner code.
- 6. In case the inner code is very short, double-click the high-level symbol to expand it.

After expanding some high-level symbols

The high-level symbols whose inner-code was very short have been expanded.

To view the flowchart of high-level symbol A:

- 7. Click to select the if-symbol under which A is nested.
- 8. Click the icon in Flowchart toolbar.

If-else Flowchart Example-3 (shows the details of **A**)

Fig. 3.5

Condensed View

- 9. Go through the detailed view to see the details of A.
- 10. Click the button to go back to while-loop flowchart.

Back to while-loop's Flowchart

Now view the flowchart of the switch:

- 11. Click to select the switch-symbol.
- 12. Click to create switch-flowchart.

Example-3 switch Flowchart

Condensed View

The switch contains a nested switch.

First create the flowchart of inner switch:

- 13. Click to select the switch-symbol.
- 14. Click to create switch-flowchart.

The nested switch

Condensed View

The condensed view is simple; you can easily go through the detailed view.

and then

button to go back 15. Click the to outer switch flowchart.

Back to the Outer Switch

Condensed View

Now collapse the inner switch:

In the detailed view.:

- 16. Double-click on the switch-symbol.
- 17. Click on the input of the high-level symbol to highlight all paths that go to it.

You can easily go through the detailed view.

Notes:

- To collapse an ordinary symbol, double click on the symbol in the detailed view.
- To collapse a high-level symbol, right-click on it; then click <Collapse Symbol> in pop-up menu. (a double-click on a high-level symbol expands it)
- When you collapse a symbol, other symbols at its level get collapsed too.
- However, when you collapse a switch-symbol, only the switch is collapsed.
- If you wish to collapse a switch and also wish to create the flowchart for that switch,
- First create the flowchart for the switch;
- Go back to the parent flowchart by clicking button; then collapse the switch.
- You may select a case symbol and create the flowchart of that case.

To Read Simple Flowcharts

When you are going through a simple flowchart

(or a simplified form of a complex flowchart),

use the following operations:

- ♦ Bracket a loop or bracket an if-else segment of the flowchart.
- Highlight all paths that can reach a given point in the flowchart.
 Highlight a connection so that it stands out from other neighboring connections.
- View the type information of all objects that appear in a given symbol.
- Get a side-by-side view of the flowchart and corresponding code.

(Please refer to Part 1: Simple Flowcharts.)

To Simplify a Complex Flowchart

1. Change the level of detail:

Try L1, L2, L3 or L4 from the toolbar till the flowchart is not too simple nor complex.

2. View the inner code of high-level symbols:

If the inner code is just three or four lines, you may wish to expand the symbol or leave it as it is.

3. If the inner code contains a substantial number lines,

Create the flowchart of the "if" or the loop that encloses the high-level symbol.

4. If the flowchart contains a switch statement,

Create a flowchart of the switch, then go back to parent flowchart, collapse the switch.

Phone: 703-904-0678 Fax: 703-904-0155 www.sgvsarc.com